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Catalunya. The research was conducted at Centre de Recerca Matemàtica (CRM)
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Abstract

Key words: Mathematical Biology, Epidemiology, Virus Dynamics

Whilst in humans free virus particles and host cells are assumed to be homogenously

mixed, in plants, the spatial component is a key factor. The natural proliferation of the

virus through a plant is known to happen from a cell to an adjoining cell. When several

strains of a virus are present on a plant leaf, the co-infection of a cell by two sub-types is

extremely rare. The mechanism which prevents this co-infection is not known in detail. A

mathematical model is constructed by modifying the typical Fisher-Kolmogorov equation

to understand this mechanism. Two equations are considered, one for each strain. They

include the supression of the competitor’s type by modifying the reproduction terms in the

Fisher-Kolmogorov equations. The hypothesis of co-infection of cells by two viral strains

on a plant leaf being extremely rare is tested for the mathematical model presented in

this paper. Running simulations of the model shows that this hypothesis is only verified

in the symmetric case of the considered rectangular 2-dimensional domain. This means

that this model only verifies the hypothesis for the case where both strains are taken at

corners of the rectangular domain and when both strains assume equal coe�cients. For

any biologically realistic case, this mathematical model does not show positive results and

is not able to verify the hypothesis.
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1

Introduction

The importance of mathematical modelling is becoming more recognised with time as it is

applied to solve many situations in an increasing amount of fields. A good model may give

us useful information on how the system of interest works in depth. Consequently, this

might allow us to make sense of data, verify experimental hypothesis and make predictions

among many others. In particular, models in epidemiology allow us to understand how

viruses spread within and between hosts. Mathematical models in epidemics have helped

decision makers in predicting the outcome of di↵erent vaccination programmes and in

preventing problems that might appear in the future [1].

Viruses infect hosts which can be as diverse as bacteria, fungi, plants, insects and

humans. In the particular case of plants, viruses can infect their host in many di↵erent

ways. Nevertheless, the natural proliferation of the virus through a plant occurs from

some small sector of infected cells to the neighbouring cells and tissues [5]. The virus is

then passed from an infected to a healthy host, which can happen in many di↵erent ways.

During the winter, for example, viruses typically propagate through seeds or pollen of

infected plants [4]. However, most plant viruses are transmitted by insects or fungal pests

[11]. The main reason for which we study plant viruses is to understand how they cause

many important plant diseases which have had a big impact on crop production [4].

The objective of this thesis is to analyse the behaviour of two viral subtypes (a

wild type and a mutant) on a plant leaf. For this we construct a mathematical model
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2 1. INTRODUCTION

which is suitable for this situation. The model consists of two coupled reaction-di↵usion

equations, one for each strain. A numerical simulation of the system in 2-dimensions

is then carried out (a 2-dimensional model is considered since on a plant leaf the third

dimension is negligible). Experimental results suggest that co-infection of a cell by two

viral subtypes is extremely rare [2]. Since this is a biological plausible factor, this idea

is included within the model. Both equations therefore include the suppression of the

reproduction of its competing type.

Motivation of the thesis : The mechanism preventing the co-infection is not known

in detail and this is what is studied in depth in this paper. The hypothesis suggesting that

co-infection of a cell by two viral subtypes is unsual is tested. Considering the results of

the study by J.C. Cantero and A.Korobeinikov [3], in which the previous hypothesis was

confirmed in a 1-dimensional symmetric case, it seems relevant to test the same hypothesis

but in the more realistic 2-dimensional case.

Organization

• Chapter 2 covers the biological background of viruses in general and viruses in plant

leaves, which is required to understand the mathematical model presented in this

project.

• Chapter 3 introduces the basic Fisher-Kolmogorov equations which are widely used

in biological systems that describe spatial spread as occurs in this project.

• Chapter 4 introduces the main model of this project which is obtained by modifying

the Fisher-Kolmogorov equations. The suppression of proliferation of a viral sub-

type by its competing type is considered for both strains at this stage.

• Chapter 5 deals with the linear stability analysis of the model introduced in Chap-

ter 4. At this stage, the stability analysis neglects di↵usion. This analysis helps

understanding the results which are presented later in the paper.



1. INTRODUCTION 3

• Chapter 6 introduces the numerical method used to solve the model presented in

Chapter 4 and shows details of the numerical simulation. The main challenge of this

project has been highly computational.

• Chapter 7 shows some of the results of the numerical simulation and they are dis-

cussed.

• Chapter 8 a more detailed stability analysis, including the di↵usion terms, is pre-

sented.

• Chapter 9 some further results and discussion are shown and also a more biologically

realistic result is presented.

• Chapter 10 provides the conclusion of this paper.

• Chapter 11 proposes an exploration of ideas to carry out further research in the same

field.

• Chapter 12 o↵ers an appendix including the fortran code used to compute the nu-

merical simulation of the model presented in Chapter 4.

• Chapter 13 provides the references.



2

Biological Background

1. Viruses

Despite viruses being the cause of many serious illnesses in humans, they have also

been a key factor in the research of molecular and cellular biology [11]. A virion is a

complete infectious virus particle. It consists of a small piece of nucleic acid wrapped in a

protein coat which is known as a capsid or nucleocapsid [4, 11]. The genetic information

of the virus is held in the nucleic acid genome and can be of type DNA or RNA [4, 11].

Furthermore, the virion can also have another protective layer surrounding the protein coat

called lipid envelope. An important remark about viruses is that they are not capable of

self-reproduction but they rely on a host organism for proliferation [7]. A host is a living

organism which is susceptible to getting infected with the virus.

2. Replication cycle of viruses

The steps for the virus to replicate itself depends on each virus; however, there are

some general steps which most viruses undergo for its self-replication. To begin with, the

viral proteins of the surface of the virus manage to stimulate the various enzymes in the

susceptible cell attaching the virus to the target or host cell [7]. The virion is then injected

into the cell and immediately afterwards, it is uncoated in order for the viral genome to be

reachable. Once the genetic information of the viral genome is read by the nucleus of the
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2. PLANT VIRUSES 5

cell, the host cell starts producing viral proteins and copies of the viral genome [7]. These

newly produced viral proteins are then used to provide the protein coats and envelopes of

the new virus particles. Finally, when these new virus particles are successfully created,

they leave the host cell looking for new target cells.

2.1 Mutation in viruses

Most of the times, the new virions created are not exact copies of the original virus.

Mutations of viruses are frequent and they occur randomly rather than being an act of

survival. The interaction of more than one sub-type of the virus is therefore typical in

hosts. Each of these sub-types of the virus is known as a viral strain. In a plant, it is

common to have the interaction of a wild strain and a mutant strain, two sub-types of

the virus. As mutations in plant viruses are frequent, so are interactions between strains

on a plant leaf. In plants, the interaction between two di↵erent viruses has di↵erent

properties from the interaction between two viral strains of a virus [2]. The latter is the

one considered in this paper.

3. Plant viruses

The proliferation of viruses is di↵erent for di↵erent hosts. Furthermore, the virus

particle-host cell interaction is also quite particular for each host and each virus. In humans

or animals, target cells and free virus particles are assumed to be homogeneously mixed.

In contrast, plant viruses a↵ect their hosts in a di↵erent way. The spatial component is a

key factor in the spread of these viruses through their hosts. The natural proliferation of

plant viruses starts from a small sector of infected cells and spreads to the neighbouring

cells and tissues; infecting, eventually, the rest of the plant [5].

The first step of the life cycle of the plant virus is the entrance of the virion into

the cell [4]. Plant virions are not capable of entering the cell wall by themselves, since no

receptors in the plant cells have yet been identified [11]. In contrast to viruses a↵ecting

humans and animals, plant virions enter the cell with the aid of some external factors.

Typically, insects cause structural damage to the cell, providing an entry route for the

virus [4, 11]. Once the virus particle enters the cell, the replication cycle of viruses takes

place.



6 2. BIOLOGICAL BACKGROUND

In order for the plant virus to increase its chances of successfully proliferating through

its host, it must infect as many host cells as possible [6]. Once a cell is infected and copies

of the virus particle are generated, the next move of the virus is to infect nearby cells. The

virions move from one cell to the neighbouring cells via the plasmodesmata (PD) which

are the channels that connect cells [6, 10]. To finally infect parts of the plant which are

further away, the plant must enter the vascular system and when it do so, then the plant

virus has successfully infected its host [4, 6].
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Basis Model Without Supression of Competitor’s

Strain

In this study, the Fisher-Kolmogorov equation serves as a basis model, since di↵usion

is used in many biological system models to describe spatial spread [9]. The Fisher-

Kolmogorov equations were first created to describe the propagation of an advantageous

gene in a population space in 1 dimension. In this particular case, the system is considered

in 2-dimensions since the third dimension on a plant leaf is negligible. Two viral strains

are considered: u, the wild strain, and v, the mutant strain, where each strain is described

by a reaction-di↵usion equation. The system is analysed in cartesian coordinates.

@u(x, y, t)
@t

= µ1

⇣
@

2
u(x, y, t)
@x

2
+

@

2
u(x, y, t)
@y

2

⌘
+ a1u(x, y, t)(1� b1u(x, y, t))

@v(x, y, t)
@t

= µ2

⇣
@

2
v(x, y, t)
@x

2
+

@

2
v(x, y, t)
@y

2

⌘
+ a2v(x, y, t)(1� b2v(x, y, t))

Where u(x, y, t) and v(x, y, t) are both virus concentrations for the wild and mutant

sub-type respectively; µ1 and µ2 are the di↵usion coe�cients for strains u and v respec-

tively; a1 and a2 are the per capita reproduction rate of their viral strain; b1 =
1
K1

and

b2 =
1
K2

where K1 and K2 are the carrying capacities of u(x, y, t) and v(x, y, t) respec-

tively, which means the maximum possible capacity of the corresponding population.
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Model With Supression of Competitor’s Strain

In a plant, a double or multiple infection of a cell by two di↵erent viral sub-types is known

to be extremely unusual [2]. Biological experiments certify that there should be some

mechanism preventing the co-infection of a cell. Therefore, the model should in some way

integrate this factor. Strain v should not propagate in the areas for which strain u has

already infected the plant, and vice versa.

The corresponding reproduction term for u is then

a1u(1� q1v)(1� b1u� v)

and for v is

a2v(1� q2u)(1� b2v � u)

So the system of equations that is considered consists of two coupled reaction-di↵usion

equations which have the following form, where u = u(x, y, t) and v = v(x, y, t)

8



4. MODEL WITH SUPRESSION OF COMPETITOR’S STRAIN 9

(1)
@u

@t

= µ1

⇣
@

2
u

@x

2
+

@

2
u

@y

2

⌘
+ a1u(1� q1v)(1� b1u� v)

@v

@t

= µ2

⇣
@

2
v

@x

2
+

@

2
v

@y

2

⌘
+ a2v(1� q2u)(1� b2v � u)

The system is considered on a rectangular domain of 2-dimensions with x 2 [0, 1] and

y 2 [0, 1] and with no-flux boundary conditions around the whole domain since clearly

there is no flux flowing outisde a plant leaf. The boundary conditions hence have the form

@u(0, y, t)
@x

=
@v(0, y, t)

@x

= 0

@u(1, y, t)
@x

=
@v(1, y, t)

@x

= 0

@u(x, 0, t)
@y

=
@v(x, 0, t)

@y

= 0

@u(x, 1, t)
@y

=
@v(x, 1, t)

@y

= 0



5

Linear Stability Analysis with Absense of

Di↵usion

For model (1) given in the previous chapter, where both strains depend on (x, y, t), the

stability conditions are obtained. First of all, the stationary uniform solutions (ū, v̄) must

be found for the model. These stationary solutions are obtainted by setting all partial

derivates to zero in equations (1), leading to the following equations where some functions

f1 and f2 are introduced:

f1(ū, v̄) = a1ū(1� q1v̄)(1� b1ū� v̄) = 0(2)

f2(ū, v̄) = a2v̄(1� q2ū)(1� b2v̄ � ū) = 0

For simplicity purposes, it is considered that b1 = b2 = 1. Then the following

stationary uniform solutions can easily be deduced from the set of equations (2) given

above.

(ū1, v̄1) = (0, 1) (ū2, v̄2) = (1, 0) (ū3, v̄3) = (
1
2
,

1
2
)

To obtain the closest linear system where (u, v) is close to (ū, v̄), the arbitrary infin-

itesimal perturbations ✏ and ⌘ are introduced where:

(3) ✏(x, y, t) = u(x, y, t)� ū and ⌘(x, y, t) = v(x, y, t)� v̄

10



5. LINEAR STABILITY ANALYSIS WITH ABSENSE OF DIFFUSION 11

The next step is to consider approximations of f1(u, v) and f2(u, v) near any station-

ary solutions (ū, v̄). Multivariable calculus may be used to obtain the following approxi-

mations:

f1(u, v) ⇡ f1(ū, v̄) +
@f1

@u

✏+
@f1

@v

⌘

f2(u, v) ⇡ f2(ū, v̄) +
@f2

@u

✏+
@f2

@v

⌘

Second order and higher terms may be neglected since infinitesimal perturbations are

considered. Recalling equations (2), f1(ū, v̄) = f2(ū, v̄) = 0, the approximations of f1 and

f2 are therefore given by:

f1(u, v) ⇡ @f1

@u

✏+
@f1

@v

⌘ and f2(u, v) ⇡ @f2

@u

✏+
@f2

@v

⌘

Finally, substituting in the equations defining the perturbations (3) into the equations

defining the main model (1), leads to the following set of equations showing how the

perturbations will evolve in time:

@✏

@t

= µ1(
@✏

2

@

2
x

+
@✏

2

@

2
y

) +
@f1

@u

✏+
@f1

@v

⌘(4)

@⌘

@t

= µ1(
@⌘

2

@

2
x

+
@⌘

2

@

2
y

) +
@f2

@u

✏+
@f2

@v

⌘

In this section, the stability is analyzed in the absense of the di↵usion term. In

Chapter 8, the same model is analyzed including this term since after the results given in

Chapter 7, it will be clear that a more detailed analysis is beneficial.

Therefore, for this section, the sign of the eigenvalues of the Jacobian matrix given by

the following matrix A, will give the conditions on the stability of the stationary solutions.

A =

2

664

@f1

@u

@f1

@v

@f2

@u

@f2

@v

3

775

Using equations (2) from above which define functions f1 and f2, the Jacobian matrix

A is explicitly given by:



12 5. LINEAR STABILITY ANALYSIS WITH ABSENSE OF DIFFUSION

A =

2

64

⇣
� a1(1� q1v)u

⌘ ⇣
� a1u(1� q1v)

⌘

⇣
� a2v(1� q2u)

⌘ ⇣
� a2(1� q2u)v

⌘

3

75

Following the research conducted by Juan Carlos Cantero and Andrei Korobeinikov

[3], only the stability conditions of the homogenous point (ū3, v̄3) = (
1
2
,

1
2
) will be shown

in this chapter. In Chapter 8, the stability of the other two homogenous solutions is

analysed.

The Jacobian matrix A for the homogenous solution (ū, v̄) = (
1
2
,

1
2
) is then:

A =

2

6664

✓
� a1

2

⇣
1� q1

2

⌘◆ ✓
� a1

2

⇣
1� q1

2

⌘◆

✓
� a2

2

⇣
1� q2

2

⌘◆ ✓
� a2

2

⇣
1� q2

2

⌘◆

3

7775

The determinant of this matrix is zero and so the condition for the homogenous

solution to be stable is that the Trace A < 0. Therefore, the stability conditions for the

homogenous solution (ū, v̄) = (
1
2
,

1
2
) are the following:

a1q1 + a2q2 < 2(a1 + a2) stable

a1q1 + a2q2 > 2(a1 + a2) unstable
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Numerical Method

Due to the non-linearity in the reproduction terms of both equations described by (1), it

is not possible to obtain an explicit solution for the model. Hence, a numerical method is

used to solve the model. The method used is the explicit finite di↵erence method.

Explicit Finite Di↵erence Method

For this method, only the numerical method of strain u is discussed but exactly

the same results apply for strain v. Considering a rectangular domain in the (x,y)-plane

where,

0 < x < 1 0 < y < 1

and assuming no flux boundary conditons around the whole domain, u(x, y, t) can be

obtained using this method for all values of t as long as initial values, u(x, y, 0) are given

on the whole domain [8]. The rectangular domain is labelled by a uniform rectangular

grid of points, spaced with �x in the x-direction and �y in the y-direction, where

�x =
1
n

x

�y =
1
n

y

The approximate solution at a time t = n is given by the following equations:

13



14 6. NUMERICAL METHOD

U

n

r,s

⇡ u(x
r

, y

s

, t

n

) r = 0, 1, . . . , n
x

s = 0, 1, . . . , n
y

By calculating the derivative in time using the finite di↵erence method, the value of

the function at the next time step is obtainted, which is what is needed to provide an

apporoximation.

@u

@t

=
u

n+1 � u

n

�t

+O(�t

2)

where �t = t

n+1 � t

n

The laplacian using this method is given below [8]:

�u =
@

2
u(x, y, t)
@x

2
+

@

2
u(x, y, t)
@y

2

=
u(x

r+1, ys, tn)� 2u(x
r

, y

s

, t

n

) + u(x
r�1, ys, tn)

(�x)2

+
u(x

r

, y

s+1, tn)� 2u(x
r

, y

s

, t

n

) + u(x
r

, y

s�1, tn)
(�y)2

+O(�x

4) +O(�y

4)

For the reaction di↵usion equation concerning strain u, the following iterative method

is considered:

U

n+1
r,s

⇡ U

n

r,s

+
µ1�t

(�x)2

⇣
U

n

r+1,s � 2Un

r,s

+ U

n

r�1,s

⌘
+

µ1�t

(�y)2

⇣
U

n

r,s+1 � 2Un

r,s

+ U

n

r,s�1

⌘

+ a1�tU

n

r,s

⇣
1� q1V

n

r,s

⌘⇣
1� b1U

n

r,s

� V

n

r,s

⌘

where the approximate solution for strain v at time t = n is given by V

n

r,s

.

This method gives the value of the unknown strain u at time t = n+ 1 at all points

of the grid in the rectangular domain considered, Un+1
r,s

.

As a summary, using this method, each value at the grid at time t = n+1 is obtained

from 6 other known values at time t = n, namely

U

n

r,s

, U

n

r+1,s, U
n

r�1,s, U
n

r,s+1, U
n

r,s�1, V
n

r,s
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Hence, given initial values at all the nodes of the rectangular domain, u(x, y, 0), the

iterative method described above is used to approximate values of the strain u for any

time. Exactly the same method is used for strain v as mentioned at the beginning of the

section.

Numerical Simulation of the Model

There is a computational gap if the problem is considered with the explicit finite

di↵erence method described above. Here, the spatial derivatives taken for the nodes at

the boundaries, for time t = n, would normally need values outside the domain to obtain

approximations at time t = n + 1. At least one of the terms out of the six needed to

obtain these approximations is not known at the boundaries of the considered domain.

The approximate values at time t = n + 1 at the boundaries must somehow be obtained

using values inside the domain.

For the system of equations (1) which defines the main model used for this project,

no flux boundary conditions are considered, this is used to solve the computational gap

mentioned above. Let’s now consider the boundary of the domain at x = 0. Since we have

no flux boundary conditons over all the domain, the same can be applied to the other

boundary nodes. Using the explicit method, at x = 0:

@u(0, y
r

, t

n

)
@y

=
u(0, y

r+1, tn)� u(0, y
r

, t

n

)
�y

= 0

But also with a simple change of variable,

@u(0, y
r

, t

n

)
@y

=
u(0, y

r

, t

n

)� u(0, y
r�1, tn)

�y

= 0

And so the following can be deduced at the boundary x = 0

u(0, y
r+1, tn) = u(y

r�1, tn)

For approximations of the laplacian at these boundary nodes, the property showed

above is used. Then, all apporoximations at time t = n + 1 can be calculated since they

are given by values inside the domain at time t = n.
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For the implementation of these properties in the numerical method for the model,

see the Appendix in Chapter 12, where the Fortran code developed in order to numerically

solve model (1) is o↵ered. These simulations required a big computational e↵ort and this

was the main challenge of this project.
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Results and Discussion

The natural proliferation of the strains occurs from a small sector of infected cells to the

neighbouring cells. Moreover, it is observed that this proliferation occurs radially from

the infected cells to the neighbouring target cells and tissues. Biologically, it would be

logical to consider the case of the mutant strain v being somewhere close to the wild strain,

since mutations occur randomly. But for this section, at first, the two viral strains are

considered at the edges of the domain (the symmetric case). Juan Carlos Cantero and

Andrei Korobeinikov [3] verified the hypothesis of the co-infection of cells being extremely

rare in a 1-dimensional case. Their results motivated this project to be conducted in a

more realistic 2-dimensional case. First, the numerical simulation will be carried out in

order to show similar results and to verify the hypothesis for the symmetric case.

In all plots, the evolution of the spread of strain u will be shown on the left-hand side

and of strain v in the right-hand side. Specific snapshots are shown for di↵erent times,

which is considered to be dimensionless for the model.

Initially, both strains will be given a value of 0.1 in a small sector of the domain and

this is shown in the plots with the yellow colour. In all initial snapshots for the plots for

which t = 0, the following scale is used:

17



18 7. RESULTS AND DISCUSSION

The rest of the plots have the following scale from 0 to 1 with the same colour range

throughout the paper.

For the following two pages, the symmetric case is shown. Both set of snapshots,

start of with each strain at one corner of the domain and at value 0.1. For the first set of

snapshots, values of the coe�cients leading to the stable case of the homogenous solution

(ū, v̄) = (
1
2
,

1
2
) is taken. It can be observed that after a large time, the system tends to

this homogenous solution.
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For the following snapshots, strain u is shown on the left, strain v on the right and the

corresponding time is given on the same line. For the following plots, the following values

of the coe�cients are taken, a1 = a2 = 1, q1 = q2 = 0.1, b1 = b2 = 1, µ1 = µ2 = 0.001.

These coe�cients satisfy the stable condition of the homogenous solution (ū, v̄) = (
1
2
,

1
2
)

shown in Chapter 5.

t = 0

t = 11.25

t = 37.5

t = 75

t = 750
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For the following 5 snapshots the symmetric case is still considered, so each strain

is still taken at a corner of the rectangular domain. Furthermore, the coe�cients take

values, a1 = a2 = 1, b1 = b2 = 1 and µ1 = µ2 = 0.001. But compared to the previous

snapshots, here larger values of q are taken, q1 = q2 = 10. These coe�cients satisfy the

unstable condition of the homogenous solution (ū, v̄) = (
1
2
,

1
2
) shown in Chapter 5.

t = 0

t = 11.25

t = 18.75

t = 37.5

t = 750
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For the previous set of snapshots, there is a clear separation between both strains

even after a very large time and the areas which are infected by strain u, are not infected

by strain v and vice versa. In the first set of snapshots, where the coe�cients take values

to satisfy the stable case for the homogenous solution (ū, v̄) = (
1
2
,

1
2
), after a large time,

both strains infect the whole domain and there is multiple infection of cells as expected.

Thus, depending on the values of the coe�cients the unstable case of this homogenous

solution seems to be achievable, which is the desired case for this project.

The last two sets of results were shown by Juan Carlos Cantero and Andrei Ko-

robeinikov [3] in 1-dimension. This is what motivated this project to be carried out and

the same results have been obtained in a more realistic 2-dimensional case. But, this is

just the symmetric case where strains u and v are taken on each corner of the rectangular

domain considered. This assumption is not biologically plausible. As mentioned in Chap-

ter 3, mutations occur randomly and so it is more realistic to consider di↵erent coe�cients

for each viral sub-type as well as non-symmetric initial conditions.

These results at first seemed to reassure the hypothesis of the co-infection of a cell

by two viral sub-types being extremely rare. The system tending to either the stable

or unstable case of the homogenous solution seemed to only depend on the value of the

constants. However, the previous plots seem to work only for the symmetric case where

both viral strains are taken at extreme corners of the domain and where the coe�cients

of both viral sub-types are the same.

Viral strain v was then moved at initial time and the system was consider in the non-

symmetric case. The same constants as before are taken, where a1 = a2 = b1 = b2 = 1

and µ1 = µ2 = 0.001. In this chapter, results are shown for these values of coe�cients

and small values of q are taken, where q1 = q2 = 0.1. The analysis carried out in Chapter

5, suggests that the stable homogenous solution (ū, v̄) = (
1
2
,

1
2
) should be approached

for these coe�cients. But, carrying out the simulation, it will be observed that di↵erent

homogeneous solutions are acheived by just changing the inital conditions which shows

that the hypothesis proposed in this project is not true.

The two following sets of snapshots take di↵erent initial positions for strain v. It will

be observed that the systems seem to tend to one of the other homogeneous solutions.
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For the following two sets of snapshots, strain u will be still on the left-hand side

and strain v on the right-hand side with the corresponding time of the snapshot in the

right margin. For the following plots, the following values of the coe�cients are taken,

a1 = a2 = 1, q1 = q2 = 0.1, b1 = b2 = 1, µ1 = µ2 = 0.001.

t = 0

t = 11.25

t = 18.75

t = 75

t = 750
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The following set of snapshots is very similar to the previous set with a slight di↵er-

ence in the initial condition for strain v. Both strains u and v still start o↵ with initial

values of 0.1. Strain u is still taken at a corner of the domain, but strain v this time

starts o↵ much closer to strain u. The same values of coe�cients are taken, a1 = a2 = 1,

q1 = q2 = 0.1, b1 = b2 = 1, µ1 = µ2 = 0.001.

t = 0

t = 11.25

t = 18.75

t = 37.5

t = 750
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In the last two sets of snapshots, there are di↵erences in results by just varying the

initial position of strain v. It can be observed that for values of coe�cients suggesting

stability of the homogeneous solution (ū3, v̄3) = (
1
2
,

1
2
), after a large time the system tends

to another solution. If the results of the simulation were as desired, there should be no

di↵erences in the behaviour of the system by just varying the initial conditions.

It can be observed that the closer strain v starts o↵ from strain u, the more it tends

to approach the homogeneous solution (ū, v̄) = (0, 1). This suggests that in the non-

symmetric case this simulation does not outcome what is desired. For the considered

coe�cients, varying the initial position of the strains, causes the system to tend to the

homogeneous solutions (ū1, v̄1) = (0, 1) or (ū2, v̄2) = (1, 0) depending on which strain has

more area to spread in a given domain. The following chapter will show a more detailed

stability analysis of the model by finding the stability conditions of the homogeneous

solutions (ū1, v̄1) = (0, 1) and (ū2, v̄2) = (1, 0).

Once this detailed stability analysis is obtained, Chapter 8 will show a similar simu-

lation to the previous two sets of snapshots. Large values of the coe�ents q1 and q2 will be

taken in order to satisfy the unstable case of the homogeneous solution (ū3, v̄3) = (
1
2
,

1
2
).
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Linear Stability Analysis Including Di↵usion

Coe�cients

The perturbations introduced previously, equations (3), depend on time and the spatial

coordinates. Furthermore, equations (4) show how these perturbations evolve in time.

Since equations (4) have linear coe�cients, the perturbations may be written as constants

multiplied by an exponential in time and exponential in space of the following form:

✏(x, y, t) = ✏�e
��t

e

i�(x+y)(5)

⌘(x, y, t) = ⌘�e
��t

e

i�(x+y)

The constants are ✏� and ⌘� for perturbations ✏ and ⌘ respectively, �� is the growth

rate and � is the wave number which is considered to be a 2-dimensional vector since

2-dimensional spatial coordinates are taken into account.

Substituting equations (5) into equations (4) from the previous chapter, which show

how the perturbations evolve in time, the following is obtained:

��✏�e
��t

e

i�(x+y) =
⇣
@f1

@u

� 2µ1|�|2
⌘
✏�e

��t

e

i�(x+y) +
@f1

@v

⌘�e
��t

e

i�(x+y)

��⌘�e
��t

e

i�(x+y) =
@f2

@u

✏�e
��t

e

i�(x+y) +
⇣
@f2

@v

� 2µ2|�|2
⌘
⌘�e

��t

e

i�(x+y)

25
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Where the functions f1 and f2 are given in Chapter 5 in equations (2). Furthermore, the

scalar product of the wave number with itself is given by |�|2= � ·� where by assumption

this scalar quantity, |�|22 R.

Dividing both equations by the exponentials in time and space, the following is

obtained:

��✏� =
⇣
@f1

@u

� 2µ1|�|2
⌘
✏� +

@f1

@v

⌘�

��⌘� =
@f2

@u

✏� +
⇣
@f2

@v

� 2µ2|�|2
⌘
⌘�

The following eigenvalue problem can then be considered:

A

q

0

@✏

�

⌘

�

1

A = �

�

0

@✏

�

⌘

�

1

A

Where the Jacobian matrix A

q

is now given by:

A

q

=

2

664

⇣
@f1

@u

� 2µ1|�|2
⌘

@f1

@v

@f2

@u

⇣
@f2

@v

� 2µ2|�|2
⌘

3

775

For simplicity purposes, it is still considered that b1 = b2 = 1, thus the following

Jacobian matrix is obtained explicitly:

A

q

=

2

664

⇣
� a1(1� q1v)u� 2µ1|�|2

⌘ ⇣
� a1u(1� q1v)

⌘

⇣
� a2v(1� q2u)

⌘ ⇣
� a2(1� q2u)v � 2µ2|�|2

⌘

3

775

The determinant of this matrix is:

DetA
q

= 4µ1µ2|�|4+2
⇣
µ2a1(1� q1v)u+ µ1a2(1� q2u)

⌘
|�|2

In particular, the stability of the homogeneous solutions (ū1, v̄1) = (0, 1) and (ū2, v̄2) =

(1, 0) is studied. The determinant of the matrix A

q

given above is always positive for these



8. LINEAR STABILITY ANALYSIS INCLUDING DIFFUSION COEFFICIENTS 27

two homogeneous solutions given positive µ1, µ2, a1 and a2, which are assumptions for

the main model (1).

Since for these particular homogeneous solutions (ū1, v̄1) = (0, 1) and (ū2, v̄2) = (1, 0)

the determinant is always positive, the sign of the trace will determine their stability.

The trace for the homogeneous solution (ū1, v̄1) = (0, 1) is:

TraceA
q

= �a2 � 2|�|2(µ1 + µ2)

and for (ū2, v̄2) = (1, 0) is:

TraceA
q

= �a1 � 2|�|2(µ1 + µ2)

For both these homogeneous solutions, the trace is negative for all positive values

of µ1, µ2, a1 and a2, which are assumptions of model (1). Therefore, both these homo-

geneous solutions are always stable. From the previous results in Chapter 6, it can be

observed that by simply considering initially the non-symmetric case, the system tended

to the homogeneous solution (ū1, v̄1) = (0, 1). This was due to the fact that this ho-

mogenous solution is always stable and will be always approached when considering any

non-symmetric initial situation.
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Further Results and Discussion

From the stability analysis shown in Chapter 6, it is now acceptable to say that the desired

situation for this project is to take values of the coe�cients satisfying the unstability of

the homogeneous solution (ū3, v̄3) = (
1
2
,

1
2
). This situation showed that the areas which

were infected by strain u were not infected by strain v and vice versa after a long time.

The situation mentioned previously, is only valid for the symmetric case. The follow-

ing results will be taking the same values of coe�cients in the non-symmetric case. This

will show that one of the other two homogeneous solutions are approached considering the

coe�cients for the unstability of the homoegnous solution (ū3, v̄3) = (
1
2
,

1
2
).

Biologically, it is plausible to take di↵erent coe�cients for strains u and v. However,

in this paper, results will just be shown for the non-symmetric initial position of the strains

and equal coe�cients for both strains. This will not show a separation of areas of infection

for each strain since the homogenous solution (ū1, v̄1) = (0, 1) should be approached.

28
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For the following snapshots, strain u is still on the left-hand side and strain v on

the right-hand side. Here, the values of the coe�cients are the following: q1 = q2 = 10,

a1 = a2 = 1, b1 = b2 = 1 and µ1 = µ2 = 0.001. Initially strains u and v take values 0.1.

Furthermore, strain u starts at a small sector in the top left corner of the domain and

strain v in the middle of the domain.

t = 0

t = 11.25

t = 37.5

t = 75

t = 750
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The previous set of snapshots allows to observe that for the values of the coe�cients

satisfying the unstable condition of the homogeneous solution (ū3, v̄3) = (
1
2
,

1
2
) and non-

symmetric initial conditions, the system tends to the homogeneous stable state (ū1, v̄1) =

(0, 1). The next set of snapshots is the same simulation but taking smaller values for the

di↵usion coe�cients, which is biologically more realistic. The values of the coe�cients

taken are the following: q1 = q2 = 10, a1 = a2 = 1, b1 = b2 = 1 and µ1 = µ2 = 0.0001.

t = 0

t = 18.75

t = 75

t = 900

t = 1125
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It can be observed that fot the previous biologically more realistic case, the time taken

to approach the homogeneous solution is much longer than in the first set of snapshots

of this chapter where the di↵usion coe�cients were larger. Nevertheless, it can still be

observed that eventually the system tends to the same homogeneous solution (ū1, v̄1) =

(0, 1).
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Conclusion

The aim of this thesis was to find a mathematical model verifying the hypothesis that co-

infection of a cell by two viral sub-types is extremely rare. This has already been proved

biologically [2] and this paper intends to find a correct model to understand the behaviour

of this mechanism.

The project was motivated by a very similar project carried out by Juan Carlos

Cantero and Andrei Korobeinikov [3]. In their case, they ran simulations of a very similar

model to (1) but in one dimension. They obtained positive results to prove the hypothesis

and this led to this project being carried out in a more realistic 2-dimensional case (the

third dimension on a plant leaf is negligible).

After carrying out a stability analysis similar to the one they o↵ered (neglecting the

di↵usion coe�cients) stability conditions on the homogeneous solution (ū, v̄) = (
1
2
,

1
2
) were

obtained. Simulations of the model were then carried out on a rectangular 2-dimensional

domain for the symmetric case. The symmetric case takes initial conditions for strains

u and v in opposite extremes of the domain and same values of the coe�cients for both

strains. This led to similar results as achieved by Juan Carlos Cantero and Andrei Ko-

robeinikov [3].

Then, the initial conditons were slightly changed and simulations were ran for this

non-symmetric case. It was observed that the system tended to one of the other two

homogeneous solutions. The project was concluded at this stage since the mathematical

32
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model proposed in this project did not prove the desired hypothesis. The stability analysis

proved that the homogeneous solutions (ū1, v̄1) = (0, 1) and (ū2, v̄2) = (1, 0) are always

stable, no matter what values the coe�cients take. This means that for any biologically

realistic situation, the system would lead to one of these homogenous stable solutions and

not give a separation of the proliferation of the two viral strains.
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Exploration

A few suggestions on how this research could be improved are presented. The aim is to

try to obtain positive results and be able to find a mathematical model which gives results

that verify the hypothesis.

Using the Fisher-Kolmogorov equations for the mathematical model seems to be a

good idea since di↵usion is used in many biological system models to describe spatial

spread. The Fisher-Kolmogorov equation has a travelling wave solution. A feature of this

solution is that u(x, y, t) 6= 0 which holds everywhere except for at u(+1,+1, t) = 0. This

property of the solution of a Fisher-Kolmogorov equation is not precise for the spread of a

virus in a plant. One suggestion on how to make this solution more precise is to consider

a density-dependent di↵usion term of the form

5 · (up 5 u)

Where p > 1. The modified Fisher-Kolmogorov equation would then have the form:

@u

@t

= µ1

⇣
5 ·(up 5 u)

⌘
+ a1u(1� b1u)

This, however, causes further computational di�culties.

34
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Another suggestion is to change how the supression of the competitor’s strain is intro-

duced. In model (1), this supression is introduced in the reproduction term, but instead

it could be introduced using impenetrable boundaries. This would be done by considering

two moveable boundaries, one for each strain, which are taken to be impenetrable. This

would prevent strain v from proliferating through areas already infected by strain u and

vice versa. This approach would require two separate domains to be considered. For

example, considering domain ⌦
v

, the values here of u could be considered to be less than

0.1. Similarly for the domain ⌦
u

where values of v are also considered to be less than

0.1. At each of these domains both Fisher-Kolmogorov equations would then have to be

solved.
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Appendix

This following code is the fortran code used in order to carry out the numerical simulation

of this project. The code was run using Fortran90 and then the plots were produced using

Matlab.

program main

IMPLICIT NONE

in t e g e r : : i , j , k

i n t e g e r : : nx=201 ,ny=201 , nt=15000

r e a l : : dx=0.005 , dy=0.005 , mu1=0.0001 , mu2= 0.0001 , q1=10, q2

=10, dt=0.0025

r e a l : : a1=1.0 , b1=1.0 , a2=1.0 , b2=1.0

r ea l , dimension ( : , : ) , a l l o c a t a b l e : : x , y

r ea l , dimension ( : , : , : ) , a l l o c a t a b l e : : u , v

r e a l : : xc=0.0 , yc=0.0

a l l o c a t e ( x (nx , ny ) , y (nx , ny ) , u (nx , ny , nt ) , v (nx , ny , nt ) )

open (2 , f i l e = ’ smallmuuu . dat ’ )

open (10 , f i l e = ’ smallmuuv . dat ’ )

open (12 , f i l e =’smallmu . dat ’ )

36
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!GENERATE A 2DMESH

DO i =1,nx

DO j =1,ny

x ( i , j )=xc

y ( i , j )=yc

xc=xc+dx

end do

yc=yc+dy

xc=0.0

end do

! I n i t i a l Condit ions

u=0.0

v=0.0

! u (nx , 1 , 1 )= 0 .9

! v (nx , ny , 1 ) = 0 .9

u(nx 5 : nx , 1 : 5 , 1 ) =0.1

v (97 : 1 02 , 97 : 1 02 , 1 ) =0.1

! v (nx 5 : nx , ny 5 : ny , 1 ) =0.1

!

! f o r each new time step k , we use the prev ious time step k 1

DO k=2,nt

!COMPUTE INTERIOR NODES OF THE NEW U

DO i =2,nx 1

DO j =2,ny 1

!U
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u( i , j , k ) = u( i , j , k 1 ) + ( (mu1⇤dt ) /(dx ⇤⇤ 2) ) ⇤(u ( i +1, j

, k 1 ) 2 ⇤ u( i , j , k 1 ) + u( i 1 , j , k 1 ) ) + &

( (mu1⇤dt ) /(dy ⇤⇤ 2) ) ⇤(u ( i , j +1,k 1 ) 2 ⇤ u( i , j , k 1 )

+ u( i , j 1 , k 1 ) ) + &

( a1⇤dt⇤u( i , j , k 1 ) ) ⇤ ( 1 u( i , j , k 1 ) b1⇤v ( i , j , k 1 ) )

⇤ ( 1 q1⇤v ( i , j , k 1 ) )

!V

v ( i , j , k ) = v ( i , j , k 1 ) + ( (mu2⇤dt ) /(dx ⇤⇤ 2) ) ⇤( v ( i +1, j

, k 1 ) 2 ⇤ v ( i , j , k 1 ) + v( i 1 , j , k 1 ) ) + &

( (mu2⇤dt ) /(dy ⇤⇤ 2) ) ⇤( v ( i , j +1,k 1 ) 2 ⇤ v ( i , j , k 1 )

+ v( i , j 1 , k 1 ) ) + &

( a2⇤dt⇤v ( i , j , k 1 ) ) ⇤ ( 1 v ( i , j , k 1 ) b2⇤u( i , j , k 1 ) )

⇤ ( 1 q2⇤u( i , j , k 1 ) )

end do

end do

!

!COMPUTE LEFT BOUNDARY NODES OF THE U(N+1)

DO i =2,nx 1

!U

u( i , 1 , k ) = u( i , 1 , k 1 ) + ( (mu1⇤dt ) /(dx ⇤⇤ 2) ) ⇤(u ( i +1 ,1 ,k

1 ) 2 ⇤ u( i , 1 , k 1 ) + u( i 1 , 1 , k 1 ) ) + &

( (mu1⇤dt ) /(dy ⇤⇤ 2) ) ⇤(2⇤u( i , 2 , k 1 ) 2 ⇤ u( i , 1 , k 1 ) ) +

&

( a1⇤dt⇤u( i , 1 , k 1 ) ) ⇤ ( 1 u( i , 1 , k 1 ) b1⇤v ( i , 1 , k 1 ) )

⇤ ( 1 q1⇤v ( i , 1 , k 1 ) )

!V

v ( i , 1 , k ) = v ( i , 1 , k 1 ) + ( (mu2⇤dt ) /(dx ⇤⇤ 2) ) ⇤( v ( i +1 ,1 ,k

1 ) 2 ⇤ v ( i , 1 , k 1 ) + v( i 1 , 1 , k 1 ) ) + &

( (mu2⇤dt ) /(dy ⇤⇤ 2) ) ⇤(2⇤v ( i , 2 , k 1 ) 2 ⇤ v ( i , 1 , k 1 ) ) +

&

( a2⇤dt⇤v ( i , 1 , k 1 ) ) ⇤ ( 1 v ( i , 1 , k 1 ) b2⇤u( i , 1 , k 1 ) ) ⇤ ( 1
q2⇤u( i , 1 , k 1 ) )

end do
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!

!COMPUTE RIGHT BOUNDARY NODES OF THE U(N+1)

DO i =2,nx 1

!U

u( i , ny , k ) = u( i , ny , k 1 ) + ( (mu1⇤dt ) /(dx ⇤⇤ 2) ) ⇤(u ( i +1,ny

, k 1 ) 2 ⇤ u( i , ny , k 1 ) + u( i 1 , ny , k 1 ) ) + &

( (mu1⇤dt ) /(dy ⇤⇤ 2) ) ⇤(2⇤u( i , ny 1 , k 1 ) 2 ⇤ u( i , ny , k

1 ) ) + &

( a1⇤dt⇤u( i , ny , k 1 ) ) ⇤ ( 1 u( i , ny , k 1 ) b1⇤v ( i , ny , k 1 ) )

⇤ ( 1 q1⇤v ( i , ny , k 1 ) )

!V

v ( i , ny , k ) = v( i , ny , k 1 ) + ( (mu2⇤dt ) /(dx ⇤⇤ 2) ) ⇤( v ( i +1,ny

, k 1 ) 2 ⇤ v ( i , ny , k 1 ) + v( i 1 , ny , k 1 ) ) + &

( (mu2⇤dt ) /(dy ⇤⇤ 2) ) ⇤(2⇤v ( i , ny 1 , k 1 ) 2 ⇤ v ( i , ny , k

1 ) ) + &

( a2⇤dt⇤v ( i , ny , k 1 ) ) ⇤ ( 1 v ( i , ny , k 1 ) b2⇤u( i , ny , k 1 ) )

⇤ ( 1 q2⇤u( i , ny , k 1 ) )

end do

!

!COMPUTE UPPER BOUNDARY NODES OF THE U(N+1)

DO j =2,nx 1

!U

u (1 , j , k ) = u (1 , j , k 1 ) + ( (mu1⇤dt ) /(dx ⇤⇤ 2) ) ⇤(2⇤u (2 , j , k

1 ) 2 ⇤ u (1 , j , k 1 ) ) + &

( (mu1⇤dt ) /(dy ⇤⇤ 2) ) ⇤(u (1 , j +1,k 1 ) 2 ⇤ u (1 , j , k 1 ) +

u (1 , j 1 , k 1 ) ) + &

( a1⇤dt⇤u (1 , j , k 1 ) ) ⇤ ( 1 u (1 , j , k 1 ) b1⇤v (1 , j , k 1 ) ) ⇤ ( 1
q1⇤v (1 , j , k 1 ) )
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!V

v (1 , j , k ) = v (1 , j , k 1 ) + ( (mu2⇤dt ) /(dx ⇤⇤ 2) ) ⇤(2⇤v (2 , j , k

1 ) 2 ⇤ v (1 , j , k 1 ) ) + &

( (mu2⇤dt ) /(dy ⇤⇤ 2) ) ⇤( v (1 , j +1,k 1 ) 2 ⇤ v (1 , j , k 1 ) +

v (1 , j 1 , k 1 ) ) + &

( a2⇤dt⇤v (1 , j , k 1 ) ) ⇤ ( 1 v (1 , j , k 1 ) b2⇤u (1 , j , k 1 ) ) ⇤ ( 1
q2⇤u (1 , j , k 1 ) )

end do

!

! COMPUTE LOWER BOUNDARY NODES OF THE U(N+1)

DO j =2,nx 1

!U

u(nx , j , k ) = u(nx , j , k 1 ) + ( (mu1⇤dt ) /(dx ⇤⇤ 2) ) ⇤(2⇤u(nx
1 , j , k 1 ) 2 ⇤ u(nx , j , k 1 ) ) + &

( (mu1⇤dt ) /(dy ⇤⇤ 2) ) ⇤(u (nx , j +1,k 1 ) 2 ⇤ u(nx , j , k 1 )

+ u(nx , j 1 , k 1 ) ) + &

( a1⇤dt⇤u(nx , j , k 1 ) ) ⇤ ( 1 u(nx , j , k 1 ) b1⇤v (nx , j , k 1 ) )

⇤ ( 1 q1⇤v (nx , j , k 1 ) )

!V

v (nx , j , k ) = v (nx , j , k 1 ) + ( (mu2⇤dt ) /(dx ⇤⇤ 2) ) ⇤(2⇤v (nx
1 , j , k 1 ) 2 ⇤ v (nx , j , k 1 ) ) + &

( (mu2⇤dt ) /(dy ⇤⇤ 2) ) ⇤( v (nx , j +1,k 1 ) 2 ⇤ v (nx , j , k 1 )

+ v(nx , j 1 , k 1 ) ) + &

( a2⇤dt⇤v (nx , j , k 1 ) ) ⇤ ( 1 v (nx , j , k 1 ) b2⇤u(nx , j , k 1 ) )

⇤ ( 1 q2⇤u(nx , j , k 1 ) )

end do

!

!COMPUTING U(1 ,1 ) OF THE NEW TIME

!U
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u (1 , 1 , k )= u (1 ,1 , k 1 ) + ( (mu1⇤dt ) /(dx ⇤⇤ 2) ) ⇤(2⇤u (2 , 1 , k 1 )

2 ⇤ u (1 , 1 , k 1 ) ) + &

( (mu1⇤dt ) /(dy ⇤⇤ 2) ) ⇤(2⇤u (1 , 2 , k 1 ) 2 ⇤ u (1 , 1 , k 1 ) ) + &

( a1⇤dt⇤u (1 , 1 , k 1 ) ) ⇤ ( 1 u (1 , 1 , k 1 ) b1⇤v (1 , 1 , k 1 ) ) ⇤ ( 1 q1⇤
v (1 , 1 , k 1 ) )

!V

v (1 , 1 , k )= v (1 ,1 , k 1 ) + ( (mu2⇤dt ) /(dx ⇤⇤ 2) ) ⇤(2⇤v (2 , 1 , k 1 )

2 ⇤ v (1 , 1 , k 1 ) ) + &

( (mu2⇤dt ) /(dy ⇤⇤ 2) ) ⇤(2⇤v (1 , 2 , k 1 ) 2 ⇤ v (1 , 1 , k 1 ) ) + &

( a2⇤dt⇤v (1 , 1 , k 1 ) ) ⇤ ( 1 v (1 , 1 , k 1 ) b2⇤u (1 , 1 , k 1 ) ) ⇤ ( 1 q2⇤
u (1 , 1 , k 1 ) )

!COMPUTE U(NX, 1 ) OF THE NEW TIME

!U

u(nx , 1 , k )= u(nx , 1 , k 1 ) + ( (mu1⇤dt ) /(dx ⇤⇤ 2) ) ⇤(2⇤u(nx 1 , 1 , k

1 ) 2 ⇤ u(nx , 1 , k 1 ) ) + &

( (mu1⇤dt ) /(dy ⇤⇤ 2) ) ⇤(2⇤u(nx , 2 , k 1 ) 2 ⇤ u(nx , 1 , k 1 ) ) +

&

( a1⇤dt⇤u(nx , 1 , k 1 ) ) ⇤ ( 1 u(nx , 1 , k 1 ) b1⇤v (nx , 1 , k 1 ) ) ⇤ ( 1
q1⇤v (nx , 1 , k 1 ) )

!V

v (nx , 1 , k )= v(nx , 1 , k 1 ) + ( (mu2⇤dt ) /(dx ⇤⇤ 2) ) ⇤(2⇤v (nx 1 , 1 , k

1 ) 2 ⇤ v (nx , 1 , k 1 ) ) + &

( (mu2⇤dt ) /(dy ⇤⇤ 2) ) ⇤(2⇤v (nx , 2 , k 1 ) 2 ⇤ v (nx , 1 , k 1 ) ) +

&

( a2⇤dt⇤v (nx , 1 , k 1 ) ) ⇤ ( 1 v (nx , 1 , k 1 ) b2⇤u(nx , 1 , k 1 ) ) ⇤ ( 1
q2⇤u(nx , 1 , k 1 ) )

!COMPUTE U(1 ,NY) OF THE NEW TIME

!U

u (1 , ny , k ) = u (1 , ny , k 1 ) + ( (mu1⇤dt ) /(dx ⇤⇤ 2) ) ⇤(2⇤u (2 , ny , k

1 ) 2 ⇤ u (1 , ny , k 1 ) ) + &
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( (mu1⇤dt ) /(dy ⇤⇤ 2) ) ⇤(2⇤u (1 , ny 1 , k 1 ) 2 ⇤ u (1 , ny , k 1 ) )

+ &

( a1⇤dt⇤u (1 , ny , k 1 ) ) ⇤ ( 1 u (1 , ny , k 1 ) b1⇤v (1 , ny , k 1 ) ) ⇤ ( 1
q1⇤v (1 , ny , k 1 ) )

!V

v (1 , ny , k ) = v (1 , ny , k 1 ) + ( (mu2⇤dt ) /(dx ⇤⇤ 2) ) ⇤(2⇤v (2 , ny , k

1 ) 2 ⇤ v (1 , ny , k 1 ) ) + &

( (mu2⇤dt ) /(dy ⇤⇤ 2) ) ⇤(2⇤v (1 , ny 1 , k 1 ) 2 ⇤ v (1 , ny , k 1 ) )

+ &

( a2⇤dt⇤v (1 , ny , k 1 ) ) ⇤ ( 1 v (1 , ny , k 1 ) b2⇤u (1 , ny , k 1 ) ) ⇤ ( 1
q2⇤u (1 , ny , k 1 ) )

! COMPUTE U(NX,NY) OF THE NEW TIME

!U

u(nx , ny , k ) = u(nx , ny , k 1 ) + ( (mu1⇤dt ) /(dx ⇤⇤ 2) ) ⇤(2⇤u(nx 1 ,

ny , k 1 ) 2 ⇤ u(nx , ny , k 1 ) ) + &

( (mu1⇤dt ) /(dy ⇤⇤ 2) ) ⇤(2⇤u(nx , ny 1 , k 1 ) 2 ⇤ u(nx , ny , k 1 )

) + &

( a1⇤dt⇤u(nx , ny , k 1 ) ) ⇤ ( 1 u(nx , ny , k 1 ) b1⇤v (nx , ny , k 1 ) )

⇤ ( 1 q1⇤v (nx , ny , k 1 ) )

!V

v (nx , ny , k ) = v(nx , ny , k 1 ) + ( (mu2⇤dt ) /(dx ⇤⇤ 2) ) ⇤(2⇤v (nx 1 ,

ny , k 1 ) 2 ⇤ v (nx , ny , k 1 ) ) + &

( (mu2⇤dt ) /(dy ⇤⇤ 2) ) ⇤(2⇤v (nx , ny 1 , k 1 ) 2 ⇤ v (nx , ny , k 1 )

) + &

( a2⇤dt⇤v (nx , ny , k 1 ) ) ⇤ ( 1 v (nx , ny , k 1 ) b2⇤u(nx , ny , k 1 ) )

⇤ ( 1 q2⇤u(nx , ny , k 1 ) )

!
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end do

! Write the de s i r ed snapshots i n to d i f f e r e n t f i l e s

! Matlab used to produce the p l o t s o f the se matr i ce s

wr i t e ( 2 ,⇤ ) u ( : , : , 1)

wr i t e ( 2 ,⇤ ) u ( : , : , 1500)

wr i t e ( 2 ,⇤ ) u ( : , : , 3000)

wr i t e ( 2 ,⇤ ) u ( : , : , 4500)

wr i t e ( 2 ,⇤ ) u ( : , : , 6000)

wr i t e ( 2 ,⇤ ) u ( : , : , 7500)

wr i t e ( 2 ,⇤ ) u ( : , : , 9000)

wr i t e ( 2 ,⇤ ) u ( : , : , 10500)

wr i t e ( 2 ,⇤ ) u ( : , : , 12000)

wr i t e ( 2 ,⇤ ) u ( : , : , 13500)

wr i t e ( 2 ,⇤ ) u ( : , : , nt )

c l o s e (2 )

wr i t e (10 ,⇤ ) v ( : , : , 1)

wr i t e (10 ,⇤ ) v ( : , : , 1500)

wr i t e (10 ,⇤ ) v ( : , : , 3000)

wr i t e (10 ,⇤ ) v ( : , : , 4500)

wr i t e (10 ,⇤ ) v ( : , : , 6000)

wr i t e (10 ,⇤ ) v ( : , : , 7500)

wr i t e (10 ,⇤ ) v ( : , : , 9000)

wr i t e (10 ,⇤ ) v ( : , : , 10500)

wr i t e (10 ,⇤ ) v ( : , : , 12000)

wr i t e (10 ,⇤ ) v ( : , : , 13500)

wr i t e (10 ,⇤ ) v ( : , : , nt )
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c l o s e (10)

wr i t e (12 ,⇤ ) u ( : , : , nt )

wr i t e (12 ,⇤ ) v ( : , : , nt )

c l o s e (12)

end program main
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